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Abstract: The human voice is an important medium of communication and expression
of feelings or thoughts. Disruption in the regulatory systems of the human voice can
be analyzed and used as a diagnostic tool, labeling voice as a potential “biomarker”.
Conversational artificial intelligence is at the core of voice-powered technologies, enabling
intelligent interactions between machines. Due to its richness and availability, voice can
be leveraged for predictive analytics and enhanced healthcare insights. Utilizing this
idea, we reviewed artificial intelligence (AI) models that have executed vocal analysis and
their outcomes. Recordings undergo extraction of useful vocal features to be analyzed by
neural networks and machine learning models. Studies reveal machine learning models
to be superior to spectral analysis in dynamically combining the huge amount of data of
vocal features. Clinical applications of a vocal biomarker exist in neurological diseases
such as Parkinson’s, Alzheimer’s, psychological disorders, DM, CHF, CAD, aspiration,
GERD, and pulmonary diseases, including COVID-19. The primary ethical challenge when
incorporating voice as a diagnostic tool is that of privacy and security. To eliminate this,
encryption methods exist to convert patient-identifiable vocal data into a more secure,
private nature. Advancements in Al have expanded the capabilities and future potential of
voice as a digital health solution.

Keywords: voice; vocal biomarker; voice analysis; vocal features; artificial intelligence

Sensors 2025, 25, 3424

https://doi.org/10.3390/s25113424


https://doi.org/10.3390/s25113424
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8267-1523
https://orcid.org/0000-0002-3031-3054
https://orcid.org/0000-0002-0512-2600
https://orcid.org/0000-0001-6441-9319
https://orcid.org/0000-0001-7590-2293
https://orcid.org/0000-0003-3251-5415
https://doi.org/10.3390/s25113424
https://www.mdpi.com/article/10.3390/s25113424?type=check_update&version=2

Sensors 2025, 25, 3424

2 of 30

1. Introduction

The human voice is a multifaceted and vital tool for interpersonal communication,
facilitating natural and efficient interactions between individuals. It serves as a primary
means of exchanging information and allows us to engage in authentic and meaningful
social interactions. With a complex array of sounds produced by the vocal cords, the voice
carries a wealth of information that enables us to convey emotions or fear, share feelings,
and communicate excitement [1]. In the realm of voice analysis, several key parameters
are commonly assessed to evaluate voice quality and characteristics. Voice assessment
can be assessed subjectively or objectively. Subjective assessment can be performed by
grading voice on overall quality (G), roughness (R), breathiness (B), asthenia (A), and strain
(S) (the GRBAS scale) [2]. Objective assessment involves the evaluation of multiple acoustic
parameters, essentially of four types: glottal features, including information on how the
sound is articulated at the vocal cords; tempo-spectral features, comprising acoustic features
used in musical information retrieval; formants, including information about the resonance
of the vocal tract; and lastly, physical attributes, such as pitch, magnitude, and mean [1,2].
Through voice examination, we gain insights into an individual’s vocal cord characteristics.
Voice analysis has found applications in diverse fields, such as speech pathology, forensic
investigation, and emotion recognition systems, highlighting its significance in numerous
domains [3].

The advent of the Fourth Industrial Revolution has brought forth numerous impactful
technologies and artificial intelligence, which have seamlessly integrated into our daily
lives and found themselves an especially important place in the medical domain, trans-
forming the scope of medical diagnosis [1]. The introduction of virtual/vocal assistants in
smartphones and smart home devices has significantly increased the use of voice-controlled
search. In 2019, approximately 31% of smartphone users worldwide utilized voice tech-
nology at least once a week, and voice searches accounted for 20% of queries on Google’s
mobile app and Android devices [1]. Conversational artificial intelligence (CAI) is at the
core of these voice-powered technologies, enabling intelligent interactions between ma-
chines such as computers and voice-enabled devices and users through voice and voice
user interfaces (VUIs). This convergence of voice technology and artificial intelligence
(AI) has made it possible for machines to interact with users in a sophisticated manner.
It is now possible to use such technology conjoined with neural networks in analyzing
and assessing key vocal parameters, simply at the touch of a smartphone recorder [4].
Adding on, the COVID-19 pandemic has increased the use of video or phone consultations
over office visits, benefiting patients who cannot travel or have limited access to medical
professionals [3,4].

Speech has been studied extensively in relation to diseases; however, using speech as
a diagnostic tool is accompanied by limitations such as the requirement of some degree
of language proficiency, accent, language, pathological and physiological influences, and
exclusion of those with limited vocal capability. Focusing on voice overcomes these limi-
tations, creating a wider, more inclusive patient population [4,5]. Voice analysis has been
employed as a diagnostic tool and a noninvasive biomarker for a range of neuropsychiatric
conditions, including Parkinsonism, major depressive disorder (MDD), and diseases like
chronic cough associated with gastroesophageal reflux disease (GERD), dyspnea, and even
COVID-19 [5-11]. However, these studies were limited by small sample size, uncertainties
associated with sensor measurements, the potential for conscious vocalizing of patients,
and unsupervised voice recordings [6-10]. A study conducted using smartphone record-
ing data showed promising outcomes in accurately identifying Parkinson’s disease. This
approach has the potential to revolutionize the screening and monitoring of Parkinson’s
disease by providing a noninvasive and easily accessible method that utilizes commonly
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available smartphone technology [12]. Novel applications use phonetic characteristics of
voice through machine learning (ML) algorithms to detect cardiac arrest outside of the
hospital and to predict pulmonary function in asthma [13,14]. Other studies have explored
the association between characteristics of voice signals and coronary artery disease (CAD),
adverse outcomes in congestive heart failure (CHF), obstructive sleep apnea (OSA), and the
progression of disease in COVID-19 patients [15-19]. Furthermore, analysis of voice has
shown promise as a predictor of cognitive decline in vasculature-originated disorders such
as diabetes, hypertension, hypercholesterolemia, and heart disease. These studies highlight
the potential of voice analysis as a noninvasive and accessible method for detecting and
monitoring cardiac and respiratory conditions [18].

There is a need for standardizing corpus collection and establishing a large-scale library
of clinically available voice samples. Algorithm optimization, updates, and integration
into user-friendly devices such as smartphone applications and connected medical devices
are also crucial steps for the future development of vocal biomarkers [14,16,18]. The
evolution of neural networks has unlocked numerous potential applications in healthcare.
These include the analysis of voice for diagnosis, classification, patient remote monitoring,
and improving clinical practices [1]. Expanding the clinical application of voice analysis
through artificial intelligence to enable the diagnosis of broader pathologies is looming. It
is important to note that no vocal biomarkers have been approved by regulatory agencies
like the US Food and Drug Administration or the European Medicines Agency [20]. We
review broader medical settings where vocal analysis can prove to be beneficial.

2. The Mechanics of Voice

Human voice production is a complex mechanism resulting from fluid structure and
acoustic interactions between the anatomy and vibration of vocal cords, activation of
laryngeal muscles, and geometric properties of the lungs [21].

2.1. Anatomy and Physiology of Voice

The vocal system comprises the vocal folds, vocal tract, lower airways, and the lungs.
The lower respiratory tract and lungs supply airflow and pressure modulated by the vibra-
tions of vocal folds, and a voice source is produced. This voice source is then modified by
the vocal tract to generate distinct output sounds [21]. The subsequent activation of the five
intrinsic laryngeal muscles—namely, the interarytenoid, lateral cricoarytenoid, posterior
cricoarytenoid, cricothyroid, and thyroarytenoid—facilitate the adduction/abduction and
geometry of the vocal cords to produce sounds [21]. Additionally, the contraction and
relaxation of laryngeal muscles regulate the length and tension of vocal cords, leading to
alterations in vocal cord tension, which is imperative for voice modulations [21].

A subglottal pressure builds up due to the initiation of airflow caused by lung con-
tractions. When this pressure crosses the required threshold pressure, the vocal cords are
pushed apart, allowing the air to escape [22]. As a result of this action, a negative pressure
is created in the glottal region. The elastic recoil property of the vocal cords along with
the glottal negative pressure leads to the closure of the glottis. The repetition of this cycle
causes the vocal cords to vibrate incessantly. Due to these vibrations, the glottal airflow
is modulated into a pulsatile flow, which further evolves into a turbulent flow [22]. The
vocal sounds thus produced are articulated with the help of the tongue, teeth, lips, and
palate to produce consonants and vowels as signaled by the speech areas of the brain cortex:
the Broca’s and the Wernicke’s area. These regions facilitate the formation of words and
sentences and ensure fluency and coherency of speech [23].

The degree of approximation of vocal folds, in association with the closure of the
glottis and the rate of glottal airflow, determines the quality of voice: breathy, strained, or
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VOICE REGULATORY SYSTEMS

neutral [24]. Incomplete adduction leads to enhanced turbulent flow through the vocal
folds in the presence of high airflow rates, generating a breathy voice. On the contrary,
when the vocal cords are in complete approximation, the low airflow rates with peaked
subglottal pressure lead to the generation of a strained or pressed voice. The neutral or
normal speaking voice is produced due to reduced subglottal pressure in association with
reduced airflow rates [24,25]. Figure 1 shows a schematic representation of the mechanics

of voice.
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Figure 1. Mechanics of voice production [26].

2.2. Properties of the Human Voice
Vocal parameters commonly used are highlighted in Table 1 [16,27-30].

Table 1. Commonly used vocal parameters.

Vocal Feature

Definition

Significance

Basic vocal features [16,26]

Amplitude

Extent of vocal cord vibrations

Perceived loudness or softness of
voice.

Pitch

Rate of vocal cord vibrations per
second

Highness or lowness of sound.

Pulse

Frequency of bursts of air when
vocal cords open and close

Unique qualities of a person’s
voice.

Noise-to-Signal Ratio (NSR)

Level of desired signal against
level of background noise
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Table 1. Cont.

Vocal Feature

Definition

Significance

Perturbation features [16,26-29]

Fundamental Frequency (FO)

Total count of sonic waves
generated through vocal cords or
number of times the glottis
opens/closes in a particular time
frame

Varies according to gender,
ranging between 85-155 Hz in
men and 165-255 in women. FO
has a direct relationship with
vocal cord length and subglottal
pressure.

Shimmer

Variation in amplitude in each
glottic cycle or degree of volume
instability

Affected by the resistance of the
glottis and vocal cord mass
lesions. Any value < 1% in
children and < 3% in adults is
considered pathological.

Jitter, also called Frequency
Perturbation

Degree of pitch instability

Highly influenced by
uncontrolled vocal fold vibrations.
Normal values range from 0.5 to
1.0% for an uninterrupted voice,
and higher percentages are
suggestive of pathologic voice. As
shimmer % and jitter % increase,
the voice becomes rougher and
quality decreases.

Harmonic Noise Ratio (HNR)

Ratio between vocal fold
vibrations (periodic component)
and glottal turbulent

airflow /noise (non-periodic
component) during a voiced
segment

Voice is considered more
melodious at higher values of
HNR and pathological at values
lower than 7 dB.

Additional features [16]

Maximum Phonation Time (MPT)

Maximum phonation time of
vowel /«:/ after deep inspiration

In glottal pathologies, MPT is
decreased.

S/Z Ratio

Calculated by individually
making /s/ and /z/ sounds for
longest duration after deep
inspiration

The S/Z ratio determines the
degree of glottic closure and
pulmonary functions to help
measure adequacy of the
laryngeal valve. An increase in
S/Z ratio may be seen due to
incomplete glottic closure with
impaired resonation.

3. Vocal Analysis Methods

The human voice is a rich source of easily collectable and analyzable high-dimensional
data. It has become possible to extract vocal features such as energy, spectrum, and
waveform as well as perturbation features [31].

The initial step in creating a digital health solution involves data collection. Voice
recordings can include reading a uniform text, counting, spontaneous vocal tasks, and
nonverbal phonation such as coughing, breathing, or vowel vocalization [32]. Sustained
vowel vocalization has been found superior due to its uniformity; language-independent
nature; and the elimination of bias risk from articulatory influences of accent, speaking
rates, stress, modulations, and any variable between languages [17,33]. Added benefits
of no training prerequisite and stability of analysis are seen [34]. A study of the better
vowel for articulation revealed that the vowel /z/ requires precise control over the air gap
between the tongue and hard palate with proper positioning and shaping of the lips. The
commonly used vowel /a/ demands less precise control, with the jaw open and the tongue
at its lowest [17]. The vowel /e/, however, can be achieved even by those with facial palsy
or tongue deviations due to the unrounded lips and mid-tongue position [35].

The ideal audio file format is WAV; however, most studies recorded audio files in MP3
format and later used Praat to enhance the file and boost the data quality [26]. Maryn
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et al. showed the Multi-Dimensional Voice Program (MDVP) to yield higher results than
Praat [36]. Raw audio files are preprocessed using methods like standardization, multi-
collinearity, and dimensional reduction to improve quality before being fed to deep learning
(DL) or machine learning (ML) models such as support vector machine (SVM), random
forest (RF), K-Nearest Neighbor (KNN), or Naive Bayes (NB) [32,37,38]. Vocal features
can be extracted using Munich Open-Source Media Interpretation by Large Feature-Space
Extraction (OpenSMILE), widely studied to extract numerous features such as frame en-
ergy, MFCC, loudness, jitter, and shimmer for processing and ML applications [33]. In
ML applications, the most crucial features are selected through Least Absolute Shrinkage
Selection Operator (LASSO), minimum redundancy maximum relevance, Relief and Lo-
cal Learning-Base Feature Selection (LLBFS) [38]. Although transfer learning is efficient
for small datasets, traditional ML algorithms are powerful for voice analysis for small
datasets [3,32,37]. SVM has certain limitations such as limited computation time with
large datasets and mathematical complexity [33]. DL models such as artificial neural
networks (ANNSs) and Convolutional Neural Networks (CNNs) are alternatives to ML
for larger datasets due to their success in categorized feature selection and in identifying
patterns [37,38].

Vocal biomarkers must undergo authentication of audio quality as well as analytical
and clinical validation in order to be defined as a vocal biomarker. After validation, biomark-
ers can be embedded into digital health solutions such as smartphone apps, chatbots, or
voice assistants [32]. Home recordings in natural conditions revealed lower accuracy, sen-
sitivity, and specificity of ML models in detecting vocal abnormalities [37,39]. Carefully
constructed datasets in controlled recording environments with efficient preprocessing and
fine-tuning of algorithms are fundamental for effective analysis [37].

DL and ML models utilized over the past 10 years in voice analytics for various
applications are presented in Tables 2—6 [3,6-11,13,15-17,19,20,26,33-35,40-56].

Table 2. Voice analytical methods using artificial intelligence in neurological disorders.

Study Purpose

Methodology Findings of Study Limitations

Sajal et al., 2020 [7]

Detection of Parkinson’s disease (PD)
in underdeveloped nations by remote
data gathering to integrate several
symptoms (rest tremor, voice
degradation) via smartphones and a

cloud-based machine learning system.

For male dataset, KNN showed highest
accuracy (specificity 89%, sensitivity
100%) for all features, but its accuracy
decreased as the features were reduced,

Resting tremor data from PD and
healthy controls (HCs) recorded with
help of three-axis accelerometer sensor
built in a smartphone. Samples with
sustained phonation of /a/for10's
were recorded using smartphone at
frequencies between 50 Hz and 8 kHz.
Jitter, shimmer, HNR, NHR, FO, pitch
period entropy (PPE), and recurrence
period density entropy (RPDE) features
selected using Maximum Relevance
Minimum Redundancy (MRMR)
algorithm. KNN, SVM, and Bayes
classifiers were trained with datasets
having combined features of voice and
resting tremors for PD analysis.

and that of SVM and Bayes increased.
In female dataset, SVM showed the
highest accuracy initially, but as
features were decreased, accuracy of
Bayes increased with not much
difference between SVM and KNN
(specificity 97%, sensitivity 99%).

For combined male and female data,
overall accuracy of all three classifiers
was reduced, with KNN showing
specificity of 93.7% and sensitivity of
94.6% at 10 features.

Tremor data: Accuracy of 98.5% for
KNN, 96.8% for SVM, and 91.6% for
Bayes in differentiating PD from HC
using top eight features.

Combined tremor and voice data:
combined accuracy for differentiating
PD and HC was 99.8%.

The variability in PD severity, intrinsic
uncertainty of sensors, and conscious or
unconscious suppression of tremors by
subjects might lead to inaccuracies in
diagnosing PD.
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Table 2. Cont.

Study Purpose Methodology Findings of Study Limitations
A total of 60 ASD patients and 60 age-
and gender-matched HCs obtained HC and ASD without BoNT-A:

Suppa et al., 2020 [40]

Diagnosing adductor spasm dysphonia
(ASD) and effects of botulinum toxin
(BoNT-A) using voice analysis.

using two speech tasks: sustained
phonation of vowel /e/ for5s and
reading an Italian sentence. Recorded
using H4n Zoom audio recorder at 44.1
kHz. Cepstral analysis was performed
using SpeechTool. OpenSmile software
used for feature extraction of 6139
features. Weka software fed with SVM
algorithm was used for extracted
feature analysis. Comparison of
cepstral features in patients before and
after BONT-A therapy was performed
using paired Student ¢ test and among
HCs and patients before and after
BoNT-A therapy was performed using
unpaired Student f test.

unpaired ¢ test showed lower values in
patients than in HCs during emission of
both vowel and sentence.

ASD before and after BONT-A: Cepstral
analysis showed lower values for
patients before BONT-A for emission of
vowel and sentence.

HC and ASD with BoNT-A: The
unpaired t test showed lower values in
patients than HCs during emission of
both vowel and sentence.

The SVM classifier using CPS + selected
features showed better results than
cepstral analysis in all three cases for
emission of vowel and sentence.

Suppa et al., 2021 [41]

To assess frequency elements of voice
tremor and analyze its response to
symptomatic treatment in patients with
essential tremors (ETs) with the help of
voice recordings.

Voice samples from 58 patients with ET
and 74 HCs with sustained phonation
of vowel /e/ at normal intensity and
pitch for 5 sec recorded in WAV format
at44.1 kHz. ET patients divided into
two groups: with voice tremors (ET
VT+) and without voice tremors (ET
VT-). Spectral analysis of voice
samples was performed using Praat. A
total of 6139 features were extracted
with OpenSMILE. The linear kernel
SVM classifier was trained with the 20
most relevant features. Feature
selection used Weka software.
Unpaired Student ¢ test used.

Abnormal oscillatory activity of 2-6 Hz
can be seen.

Between HC and ET VT+ patients, the
SVM classifier showed optimal
diagnostic threshold value of 0.88.
SVM classifier also showed significant
diagnostic performance when ET VT+
and ET VT— groups were compared.

Daily vocal fluctuations were not
considered, as voice samples were not
serial.

Only vocal cord oscillations were
considered for vocal tremors, but jaw
and neck tremors were not taken into
account, which can potentially affect
the quality of the voice.

Tena et al., 2021 [42]

Bulbar involvement detection in
amyotrophic lateral sclerosis (ALS)
from voice analysis using ML
algorithm.

A total of 45 Spanish ALS patients and
18 HCs were asked to provide voice
samples with sustained phonation of
/a/,/e/,/i/, /o/, /u/ for 3-4sunder
medium loudness. Pitch, jitter,
shimmer, and HNR were analyzed with
Praat. ML classifiers: SVM, NN, LR,
LDA evaluated with performance
metrics.

At 50% threshold, SVM classifier was
95.8% accurate, followed by NN (94.8%
accuracy) and LDA (94.3% accuracy) in
identifying ALS with bulbar
involvement from HCs. While
differentiating ALS without bulbar
involvement from HCs, NN showed
the highest accuracy of 92.5%.

Small sample size highly influences the
significance of the results.

Subjects and controls were not age
matched.

Carron et al., 2021 [43]

Methodology to differentiate PD from
HC based on smartphone-recorded
phonations and to see the effect of
uncontrolled environments on these
systems.

PD and HCs recruited from two
databases: UEX and mPower. The UEX
database patients recorded three5s /a/
phonations using a model BQ Aquaris
V smartphone in a quiet room. MPower
database patients recorded /a/ vowel
on iPhones or iPods in their own
environment. Recordings were
trimmed to 1 s using Audacity. A total
of 33 features were extracted and
preprocessed. Feature selection,
hyperparameter optimization, and
comparison of performance of six
classifiers: LR, RE, SVM, gradient
boosting (GB), passive aggressive (PA),
Perceptron).

UEX database:

PA, Perceptron, SVM, LR: accuracy of
>0.9 and greater AUC, processing times
of <1 min. PA was superior.
Lempel-Ziv complexity (LZ-2), CPP,
period density entropy (PDE), fourth
and eighth MFCC were highly selected
features in the models.

MPower database:

Lower accuracy, sensitivity, specificity,
AUC compared with UEX database
findings.

GB best among mPower classifiers.
Shimmer, MultiFractal Spectrum Width
(MFSW), Glottal Quotients, MFCC6
most selected features.

Lin et al., 2022 [34]

Association between frailty (defined
through three frailty scales) and voice
features in elderly people > 60.

Vowel /a/ for 1srecorded. Signals
digitalized using an A.D. converter.
Analyzed with LabVIEW. Four features
assessed (average number of ZCR, Al;
variations in local peaks and valleys,
A2; variations in first and second
formant frequencies, A3; spectral
energy ratio, A4). Stata software for
statistical analysis.

A1 correlated with less likeliness of
frailty. A2 was directly proportional to
frailty. Gender differences seen: Al and
A3 increase showed increased odds of
frailty more strongly in men. In women,
stronger association seen with A4. A3
and A4 were a closer match to natural
voice. A4 seen to be a good acoustic
measure of frailty.

Only 1 s recording taken, missing out
on some important vocal features.
Use of vowels is not a real mimic of
natural language due to varying
frequencies and amplitudes.
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Table 2. Cont.

Study Purpose

Methodology

Findings of Study

Limitations

Mabhon et al., 2022 [27]

Assessment of relation between vocal
characteristics and normal 10-year
cognitive decline with age from adults
in the MIDUS national sample.

Audio clips from patients’ cognitive
interviews collected. Brief test of adult
cognition by telephone to determine
cognitive level. Audio clips filtered to
include uninterrupted speech. Six
metrics of voice measured (pitch, pulse,
voice breaks, jitter, shimmer,
amplitude). Longitudinal multilevel
modeling (MLM) and Ime4 package in
R used for analysis.

Age indirectly correlated with pulse
and voice breaks and directly
associated with jitter and shimmer.
Sex associated negatively with jitter,
shimmer, and amplitude but positively
with pitch, pulse, and voice breaks.
Education inversely related to pitch,
directly related to pulse, voice breaks,
shimmer. Neurological diseases,
depression, and chronic conditions
negatively associated with pulse,
shimmer, and jitter, respectively.
Depression positively associated with
pitch. Chronic conditions positively
related to pulse and voice breaks.

Audio samples obtained during
cognitive testing showed significant
association with cognition and could
suggest dependency. Recordings were
of low quality (MP3).

The study population was of limited
diversity.

Suppa et al., 2022 [9]

Comparison of PD patients (scored by
Hoehn and Yahr scale—H&Y—and
UPDRS part III), in early to mid-stages
of disease, patients on ON and OFF
therapy, PD and controls and effect of
L-Dopa on voice.

The study population included 108 HC
and 115 PD patients, out of which 57
early-stage had never taken L-Dopa, 58
mid-stage were on chronic L-Dopa
therapy—31/58 when OFF and when
ON evaluated. Clips of 5 s vowel /e/
and standardized Italian sentence
recorded in usual pitch, intensity using
high-definition audio recorder H4n
Zoom with a Shure WH20 Dynamic
Headset Microphone 5 cm from mouth.
Preprocessing with OpenSMILE. A
total of 6139 vocal features were
extracted from each sample. Feature
selection using CFS. Graded by
relevance by calculating information
gain through information gain attribute
evaluation (IGAE) algorithm. Top 30
features used in SVM classifier based on
linear kernel through MATLAB. Feed
forward ANN to calculate degree of
voice impairment (likelihood ratio, LR).

SVM classifier:

HC and early-stage PD and early- and
mid-stage PD—high accuracy for ROC
analysis for both vowel and sentence
(AUC —0.024, —0.034, respectively).
HC and mid-stage PD—greater
accurate ROC analysis for vowel vs.
sentence (AUC =0.083).

L-Dopa displayed improvement in
voice impairment.

Mid-stage PD ON and OFF—ROC
analysis showed high accuracy for both
vowel and sentence (AUC = —0.032).
HC and mid-stage ON patients—ROC
showed superior classification (AUC =
—0.072).

Correlation analysis: positive
correlation between disease and
cognitive challenge vs. voice disability.
LR corresponds to the degree of disease
and vocal impairment.

Daily physiological voice fluctuations
were not taken into consideration.
Age differences exist between cohorts.

Hires et al., 2022 [44]
Detection of PD from voice recordings
using CNN algorithm.

Three different datasets: PC-GITA, the
Vowels dataset, and the Saarbruecken
Voice Database (SVD) with different
numbers of study subjects used.
PC-GITA and vowel dataset contained
sustained phonation of vowels /a/,
/e/,/i/,/o/, /u/ atnormal pitch; SVD
dataset contained sustained phonation
ofonly /a/, /i/, /u/ at normal, rising,
high, falling, and low intonations.
Short-time Fourier transform (STFT)
employed to convert recordings into
image data. Spectrogram enhanced
using Gaussian blurring. Multiple
fine-tuned (MFT) CNN module trained
with image datasets. Performance of
CNN model was analyzed using
ResNet50 and Xception architecture.

The CNN model was able to
distinguish between phonation of
different vowels in patients with PD
and HCs. For vowel /a/, specifically, it
showed 99% accuracy, 86.2% sensitivity,
93.3% specificity, and 89.6% AUC.

Table 3. Voice analytical methods using artificial intelligence in mood disorders.

Study Purpose

Methodology

Findings of Study

Limitations

Taguchi et al., 2018 [10]
Detection of MDD by analyzing
changes in vocal acoustic features.

Groups of 36 patients with MDD and 36
HCs were instructed to read the digits
“012-345-6789” followed by speaking
the vowels /a/, /u/, /o/ in30s, again
followed by the digits. Samples were
recorded with the help of Google Nexus
7 (TM) tablet at 22.05 kHz. After
preprocessing, ‘Feature set of
Interspeech 2009 Emotion Challenge’
configuration of OpenSMILE v2.1.0
was used to analyze voice samples.
Features assessed were f0, HNR, zero
crossing rate, twelve dimensions of
Mel-frequency cepstral coefficient
(MFCC), and root-mean-square of
energy. Statistical analysis performed
by Student ¢ test.

According to Student f test, MFCC-2
was found to be higher in patients with
MDD. In the discriminant analysis of
MECC, only MFCC-2 (second
generation) was helpful in
differentiating between MDD and HCs
with sensitivity of 77.8%, specificity
86.1%, and accuracy 81.9%.

Small sample size.
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Table 3. Cont.

Study Purpose

Methodology

Findings of Study

Limitations

Wang et al., 2019 [8]

Analysis of vocal differences in HCs
versus patients with MDD to diagnose
MDD.

A total of 47 patients with MDD and 57
age- and gender-matched HCs were
asked to complete four vocal tasks:
“Question Answering” (QA), “Text
Reading” (TR), “Picture Describing”
(PD), and “Video Watching” (VW) to
express positive, negative, and neutral
emotions. A total of 12 vocal samples
were taken for each patient. Feature
extraction from the collected voice
samples done with openSMILE.
Statistical analysis of data was
performed using multiple analysis of
covariance (MANCOVA).

MANCOVA analysis exhibited that a
considerable difference exists in the 12
vocal samples between the patients
with MDD and the HCs.

Among the analyzed acoustic features,
MFCC-5, MFCC-7, and loudness
showed difference consistently among
the two groups and can potentially be
used to diagnose MDD through voice
analysis.

The study cannot be generalized due to
the small sample size and inclusion of
patients with only MDD.

The HCs were not matched for
education levels with those of MDD
patients, which further limited the
generalization of the study.

Schultebraucks et al., 2021 [45]
Development of ML-based voice
analysis and other feature areas (facial
expressions, movement, speech) to
monitor cognitive performance
through various domains in trauma
victims.

DSM-5 post-traumatic stress disorder
(PTSD) victims were interviewed and
recorded while answering
standardized questions for 3 min.
Processing of raw files: Feature
selection using RF feature ranking,
linear model feature ranking using LR,
recursive feature elimination using LR,
and stability selection via randomized
via LASSO. A total of 247 features were
extracted using Parselmouth (Python
library). Evaluation of ML models
(SVM, RF, XGBoost, GBM, AdaBoost,
linear, ridge, elastic net, and LASSO
regression). Intensity (dB), formant,
pitch variability, amplitude quotient, f0,
HNR, glottal to noise excitation ratio
calculated.

XGBoost had the best performance
using cross-validation.

Voice analysis among other feature
areas is effective in predicting each
cognitive domain.

Difficulty in understanding ML results
due to complex nature of models makes
it difficult to determine the relation
between selected features in the
high-dimensional feature space of the
developed model.

Shin et al., 2021 [46]

Diagnosing major and minor
depression from vocal biomarkers
employing ML.

There were 93 subjects in 3 groups: not
depressed (ND), minor depressive
episodes (mDEs), and MDD. Objective
depression evaluated using the
Hamilton Depression Rating Scale
(HDRS), subjective depression
evaluated using Patient Health
Questionnaire-9 (PHQ-9), and anxiety
evaluation performed using Beck
Anxiety Inventory (BAI). A total of 21
glottal, tempo-spectral, formant, and
other physical aspects were extracted.
Four ML models: multilayer perceptron
(MLP), LR, SVM, and Gaussian Naive
Bayes (GNB) were employed to identify
depressive voice changes.

Out of 21 extracted features, 8 showed
significant differences.

Between the ND and mDE groups, the
features spectral centroid, spectral
roll-off, standard deviation pitch, voice
portion, sq mean pitch, ZCR, and mean
magnitude recorded differences.
Between mDE and MDD, only standard
deviation pitch showed a difference.
Among ML models, MLP exhibited the
best performance: AUC 0.79 for mDE
and 0.58 for MDD at 7:3 training set. At
8:2 training set, AUC 0.69 for mDE and
0.67 for MDD.

The sample size was small because
large-scale data collection is
time-consuming.

The degree of anxiety was not
considered while extracting voice
features, as anxiety can alter acoustic
features in depression.

The study could not establish a
connection between voice features and
depression severity.

Lee et al., 2021 [47]

Development of a voice-based
screening test for depression (VoiSAD)
while patients read mood-inducing
sentences (MISs).

MDD patients recorded in a quiet room
using a Tascam iXZ Microphone
fastened to chest while reading out MIS
(containing positive, negative, and
neutral MISs). Preprocessing with
VoiceBox toolkit for Matlab. Feature
extraction and analysis with
OpenSMILE using audio-visual
emotion challenge (AVEC) and Geneva
Minimalistic Acoustic Parameter Set
(eGeMAPS). A range of 17-43 features
selected based on average F score.
Classification (AdaBoost classifier).

VoiSAD model: AUC of 0.9 in men and
0.8 in women.

Top relevant vocal features in men:
Spectral, energy-related features, first
MECC, mean of loudness and audio
spectrum, 20% percentile of loudness,
root quadratic mean of audio spectrum.
Top relevant vocal features in women:
Prosody-related features, root
quadratic mean of FO, third
inter-quartile of FO, mean of f0, 80%
percentile of f0, semitone, percentile FO.

Lack of generalizability.

Influence of psychotropic drugs on
vocal features of drug-dependent
patients was not studied.

MIS poses a complication of behavioral
bias in the patients.

Less focus on less-severe depressive
diagnosis (dysthymia, adjustment
disorder with depression).

Gao et al., 2022 [20]

Using voice information to detect
fatigue in HCs after 36 h of sleep
deprivation.

TX650, Sony recorder used to record
short text, vowels, phrases from HCs.
Denoising and features extraction (f0,
energy, zero-crossing-Zcr, HNR, jitter,
shimmer, loudness, and 12 MFCCs).
Classifiers—LR, linear discriminant
analysis (LDA), KNN, classification
and regression trees (CART), Naive
Bayes classifier (NB), SVM, MLP to
determine fatigue.

Acoustic features for vowel /a/ after 36
h not significantly different than at
onset of study.

SVM—88% prediction accuracy of
fatigue for single vowels, 94% for
multi-vowels.

CART performed best for speech
analysis with accuracy, recall, precision,
F1 0f 76%, 81%, 76%, 76%, respectively.

Only male acoustics of a certain age
group were studied.
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Table 3. Cont.

Study Purpose

Methodology

Findings of Study

Limitations

Iyer et al., 2022 [48]

Automatic classification of short speech
segments from helpline calls to
determine risk of suicide.

Telephone recordings were collected
from 281 Suicide Call-Back Service and
000 emergency services and
preprocessed to augment signals and
reduce noise. Segments of patients’
voice annotated using Audacity.
Penalized Lasso regression to identify
only vocal predictors (amplitude,
frequency, loudness, roughness,
spectral slope) with strong association
with suicide risk. Generalized additive
mixed model and component-wise
gradient boosting classification model
to predict suicidal risk.

When at imminent suicidal risk, both
male and female callers spoke with less
signal strength. Increase in spectral
slope seen in both sexes as the level of
suicidal risk increased.

Caller gender was a major moderator.
All low-suicide-risk speech frames
were correctly classified. AUC of 98.5%
was achieved.

Only a short segment of audio is
required for suicidal risk assessment,
and thus, it can be used for triage.

Misjudgment of imminent-risk callers
as low-suicide-risk callers causing
concern of untimely recognition of
those in need of help.

Study did not consider members of
minority and non-English speaking
communities.

Table 4. Voice analytical methods using artificial intelligence in pulmonary disorders.

Study Purpose

Methodology

Findings of Study

Limitations

Sara et al., 2020 [19]
Pulmonary hypertension detection
through vocal biomarkers.

Voice samples recorded with three
speech tasks for 30 s: Rl—reading a
prespecified text, R2—describing a
positive emotional instance, and
R3—describing a negative emotional
event. Samples analyzed and converted
into vocal biomarkers using Vocalis
software in smartphones. Acoustic
features: jitter, shimmer, pitch,
loudness, and Mel Cepstrum
representation were extracted using
MFCC. ML techniques were used to
calculate biomarkers, and statistical
analysis was performed using Student
test.

A high mean pulmonary arterial
pressure (PAP) was directly
proportional to mean values of the
voice biomarker (0.74 £ 0.85 vs. 0.40 +
0.88, p =0.046).

Pulmonary capillary wedge pressure
(PCWP) and pulmonary vascular
resistance (PVR) showed no significant
relation to voice biomarkers.

Small sample size, use of only one
language (English), and homogeneity
of study population limits the
generalization of results.

The study also fails to provide
information on underlying cause of the
association between vocal biomarkers
and PAP.

Verde et al., 2021 [6]
Detection of COVID-19 through
Al-mediated voice analysis.

Voice samples from 83 HCs and 83
COVID-19 patients were obtained
using the coswara database. /a/, /e/,
/o/ considered for voice feature
extraction of FO, shimmer, jitter, HNR,
and MFCC. ML algorithms: Bayes,
SVM, SGD, LWL, Adaboost, Bagging,
RF, C4.5 Decision Tree trained with
these datasets. Weka tool used to
perform analysis.

Among the ML models, RF (accuracy:
82%, sensitivity: 94%, specificity:
70.59%), Adaboost (accuracy: 74%,
sensitivity: 71%, specificity: 76.4%)
SVM (accuracy: 74%, sensitivity: 94%,
specificity: 52.94%) showed better
performance in detecting voice changes
in COVID-19 patients from HCs.
Features extracted from vowel ‘e’ able
to diagnose COVID-19 patients better
than other vowels, with accuracy of
85%.

The voice recordings were
unsupervised and contained noises;
hence, results cannot be completely
validated.

Maor et al., 2021 [49]
Relationship between a vocal
biomarker and COVID-19 infection.

A total of 80 subjects in 2 groups
(positive and negative for COVID-19)
recorded themselves through Vocalis
Health Research mobile app while
reading text on the screen. Encoded
and 512 features extracted with
knowledge transfer using CNN. Two

classification models studied (RE, SVM).

Statistical analysis using Python and
IBM SPSS Statistics software.

Vocal biomarker highest among the
COVID-19-positive group, with a
one-unit increase in vocal biomarker
associated with a rise in the possibility
of a positive test of sixfold using a
multivariate binary LR.

Vocal biomarker detection rate of 69%
of asymptomatic COVID-19-positive
patients seen.

Lack of generalizability.

Study limited to Hebrew language,
does not consider possible effects of
language on the biomarker.

Vocal change seen could also be due to
an unrelated respiratory infection.

Fiorella et al., 2021 [50]

Effect of surgical masks on vocal
parameters to determine utilization of
surgical masks for safely performing
vocal analysis in COVID-19 patients.

HCs recorded sustained /a/ vowel
while standing in a silent room 20 cm
from a Samson Meteor Mic-USB Studio
Condenser Microphone with and
without a mask. Praat vocal analysis of
pitch (mean, median, min, max),
number of pulses and periods, jitter
(local, rap, ppg5, ddp), shimmer (apq3,
apq5, apql1, dda), HNR.

No significant difference in any
parameters of voice with or without a
surgical mask.




Sensors 2025, 25, 3424 11 of 30

Table 4. Cont.

Study Purpose

Methodology

Findings of Study

Limitations

Elbéji et al., 2022 [3]

Al-based pipeline to create a vocal
biomarker for smartphones to monitor
fatigue in COVID-19 patients

A total of 1772 voice recordings of 2
types of voice recorded on a
smartphone app: one reading a
paragraph, one with constant vowel
vocalization. Preprocessing using
audio clustering (DBSCAN). Feature
extraction using transfer learning
converted to mel-spectrograms and
passed through CNN. Four
classification models evaluated to
determine fatigue or no fatigue: LR,
KNN, SVM, soft voting classifier (VC).

For male iOS and Android users: VC
the best model, with AUCs of 85% and
82%, respectively, and accuracy,
precision, recall, F1-score of 89% and
84%.

For female iOS and Android users:
SVM the best, with precision of 79%
and 80%, respectively, AUC of 79% and
86%.

Study limited to absence/ presence of
fatigue only, not severity.

Android and iOS users have different
microphones, which directly impacts
audio quality.

Language variations could have
resulted in different voice features.

Higa et al., 2022 [33]

Identifying a voice biomarker for
remote monitoring of anosmia and
ageusia in COVID-19 patients

Two types of audios: reading an extract
and another holding /a/ as long as
possible were recorded on a digital app.
Raw audio was preprocessed with
noise cleaning. Feature extraction using
openSMILE. Data divided into
60/20/20 to train, validate, and test ML
algorithms (RF, KNN, SVM) to see
which classifier is best to detect
anosmia or ageusia.

KNN model best for classifying both
anosmia and ageusia for both Android
and i0S, with AUC of 87% and 80% and
precision of 88% and 85%, respectively.
Model can effectively distinguish
between anosmia and ageusia.

Better in detecting the absence of
symptoms rather than presence.

Language and accent may alter model
performance.

Pah et al., 2022 [17]

Evaluation of various phenomes and
vocal features in differentiating
COVID-19 patients with respiratory
symptoms.

Sustained phenomes (a/e/i/0/u/m) of
COVID-19 patients and HCs recorded
in single breath in natural voice using
Android phone microphone at 8 kHz
and 32-bit resolution daily. One-second
segment converted to WAV format for
feature extraction using Audacity.
Vocal features (jitter, shimmer, SD of
pitch, HNR, NHR, formants, VTL,
MECC, intensity) extracted using Praat.
MATLAB 2018b used for statistical
analysis, Anderson-Darling test used
to examine extracted features;
Mann-Whitney U test used for
comparison of features between both
cohorts. SVM to determine
effectiveness of vocal features in
differentiating COVID-19 from HCs.

The /i/ phenome had the most
valuable extractable features to
separate HCs from infected, with
highest F1 score of 94.3% through SVM
classification.

Phenome /a/ had the least significant
features.

Features related to frequency
modulation of vocal tracts (MFCC,
formants, VTL) and shimmer, intensity
more susceptible to vocal changes due
to COVID-19.

Statistical analysis of voice recordings
in first six days of testing positive better
in differentiating COVID-19 and HCs.

Park et al., 2022 [35]

To identify post-stroke patients at risk
of aspiration and in need of tube
feeding using ML models with voice
recorded via a mobile.

Patients with dysphagia due to brain
lesions recorded phonating /e/ for at
least 5 s with iPads. Preprocessing of
raw signals using Intel i9 X-series
processor and GeForce RTX 3090. Praat
software for feature extraction (jitter,
shimmer) measured by local, absolute,
relative average perturbation (RAP),
PPQ5, ddp, local, localdbshimmer,
amplitude perturbation quotient
(APQ3, APQ5, APQ11), Dda, CPP, and
statistical analysis using R statistical
software. Evaluation of ML models (LR,
decision tree, RF, SVM, GMM,
XGBoost).

Groups at higher risk of aspiration had
higher standard deviations of
amplitude perturbation, f0, frequency,
and noise than low-risk patients.
XGBoost had higher sensitivity AUC,
with RAP, APQ11 shimmer features
having the most impact on the model.

Using mobile phones eliminates the use
of special equipment, and thus offers
safety and efficiency in patients
severely ill or at risk of aspiration
pneumonia.

Yaslikaya et al., 2022 [16]
Relationship between voice and
obstructive sleep apnea (OSA) and time
spent below 90% oxygen saturation
(CT90%) during polysomnography.

OSA patients divided into four groups:
normal, mild, moderate, and severe
according to apnea hypopnea index
(AHI). Clips of 5 s recordings of vowels
/«:/, /i:/ inisolated audiometry booth
using laptop-integrated microphone
(SAMSON C01UPRO) and Audacity
program. MPT and S/Z ratio calculated.
Praat voice analysis. Statistical analysis
with SPSS, ANOVA, and Pearson
correlation test.

From first to fourth group, MPT was
20.67,17.06,15.44, 14.06, respectively,
with significant difference between the
first and third groups and the fourth
group.

Mean S/Z ratio was 0.99, 0.90, 0.89, 0.92
from first to fourth group, respectively.
Vowel / «:/

No difference in f0. Significant
differences in jitter %, shimmer %, HNR
between groups.

Vowel /i:/

Significant differences in f0, jitter %,
shimmer %, HNR between groups.
Positive correlation for both vowels
between CT90% and shimmer % and
negative correlation with HNR. No
correlation with f0, jitter %, MPT, S/Z
ratio, and CT90%.

Lack of comparison between different
acoustic analysis programs.

Gender differences not taken into
consideration.
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Table 5. Voice analytical methods using artificial intelligence in cardiac disorders.

Study Purpose

Methodology

Findings of Study

Limitations

Maor et al., 2018 [51]

Identification of association between
CAD and characteristics of voice
signals.

Voice data of 101 CAD patients
undergoing coronary angiogram and 37
HCs obtained using smartphones.
Three data samples were taken from
each individual while reading and
mentioning a positive and a negative
emotional event. Feature extraction
performed using MFCCs, and 81 total
voice features were extracted.
Statistical analysis performed with IBM
SPSS version 20.0.

Univariate binary LR model showed
association of five voice features with
CAD (p <0.05). The multivariate binary
regression model revealed that among
those five features, only two features
showed strong correlation with CAD
during emotional events. However,
there was no significant difference in
these voice features when compared
among patients with and without LAD
occlusion or in patients who underwent
revascularization. Furthermore, these
features were not helpful in
distinguishing mild, moderate, or
severe disease.

This study fails to explain the
underlying mechanism of the
associations.

Small sample size, inclusion of only
Caucasian subjects, and usage of only
English language.

Poor voice quality in the data limits
feasibility of this approach.

Maor et al., 2020 [15]

Evaluating the association between
CHF adverse outcomes and vocal
biomarkers.

A total of 10,583 subjects were divided
into 2 groups: CHF and non-CHE. A 20
s voice sample was obtained from each
subject through phone conversation.
Vocalis software extracted vocal
features: jitter, shimmer, pitch,
loudness, and Mel Cepstrum
representation. ML model trained with
datasets and converted into vocal
biomarkers. Statistical analysis
performed with ANOVA test.

The univariate Cox regression model
exhibited increased death risk of 30% in
Q2, 70% in Q3, and 270% in Q4
compared with Q1 as reference (p < 0.05
for Q2 and p < 0.001 for Q3 and Q4)
when the vocal biomarkers were
categorized into 4 equal quartiles.

The results showed that 1 SD of
biomarker was associated with a 48%
elevated risk of death (p <0.001) and
25% elevated risk of hospitalization
during follow-up (p <0.001) when the
biomarker was taken as a continuous
variable.

Use of only one language
(Russian/Hebrew).

This is an observational study; hence, it
does not provide concrete data on vocal
biomarkers so that it can be used as a
stand-alone diagnostic method.

Rafi et al., 2022 [13]

Detecting cardiac arrest out of the
hospital with the help of phonetic
characteristics of voice through ML.

Voice samples from 820 calls made to
the emergency room by patients whom
had out-of-hospital cardiac arrest
(OHCA) from 2017 to 2019 were
obtained. The f0, intensity, formants,
jitter, HNR, shimmer, number of
periods, and number of voice breaks
features were considered for analysis.
ML algorithms: neural network, RF,
and LR trained to develop three
predictive models.

Among all classifiers, RF showed the
best results, with AUC =74.9,95% Cl =
67.4-82.4.

Table 6. Voice analytical methods using artificial intelligence to be mentioned.

Study Purpose

Methodology

Findings of Study

Limitations

Domeracka-Kotodziej et al.,
2014 [11]

Assessment of changes in
voice quality in patients
suffering from GERD-related
chronic cough and dysphonia.

A total of 249 GERD patients
were divided into 4 groups:
men with chronic cough, men
with dysphonia, women with
chronic cough, women with
dysphonia. Assessment of
voice quality was performed
using MDVP, sonograms, and
GRBAS scale.

All groups exhibited vocal
changes in objective and
subjective analysis.

Objective voice analysis using
Yanagihara scale revealed
lesser degree of hoarseness in
GERD patients with cough
compared with patients with
dysphonia. MDVP analysis in
female GERD patients with
chronic cough, voice
turbulence index (VTI) values
less abnormal than those with
dysphonia. In male GERD
patients with cough, jitter,
pitch perturbation quotient
(PPQ), relative average
perturbation (RAP), and
smooth PPQ features were
less abnormal.
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Table 6. Cont.

Study Purpose

Methodology

Findings of Study

Limitations

Ramirez et al., 2018 [52]

To analyze the changes in
electroglottography (EGG),
acoustic features of voice and
Voice Handicap Index (VHI)
in patients with
laryngopharyngeal reflux
(LPR).

Vocal samples of a sustained
phoneme (a) phonated for 4 s
at natural pitch from 17
patients with LPR and 17 HCs
were recorded using a layer
spacing microphone. Acoustic
features f0, jitter, and shimmer
were used for analysis. All the
study subjects subsequently
underwent EGG using a
laryngograph microprocessor
EGG-A-100. Vocal samples
with sustained phoneme (a)
were again recorded and were
assessed for open quotient
(OQ) and irregularity (%).
Statistical analysis was
performed using Student ¢
test.

Student f test demonstrated
non-significant difference

(p = 0.092 for men and

p = 0.065 in women) in fO
between both groups.
Significant difference was
found (p < 0.05) in jitter and
shimmer between both
groups. In EGG, the Student ¢
test reported higher values of
OQ and irregularity
percentages in patients with
LPR compared with HCs. VHI
values were abnormal in LPR,
but no significant correlations
found between VHI and
abnormal acoustic features.

The small sample size and
non-homogeneity of study
subjects limits the

generalization of the study.

Ruas et al., 2014 [53]
Assessment of voice feature
alterations in mucosal
leishmaniasis (ML).

Voice recordings from 26 ML
patients were analyzed for
hoarseness, roughness, and
time assessment of the
prolonged phonation of
vowels A and S/Z using
Plantronix-model A-20
microphone. Glottal to Noise
Excitation Ratio (GNE), jitter,
and shimmer measured.
Statistical analysis was
performed using Fisher exact
test.

Dysphonia was associated the
most with pharyngeal lesions
(80%, p < 0.001), followed by
oral cavity (70%, p = 0.015),
and then the larynx (50%,

p = 0.004).

No difference in voice feature
changes according to the
position of lesions. Age,
gender, alcohol, smoking were
not associated with changes in
voice.

Mahato et al., 2018 [54]
Assessment of voice quality in
schoolteachers pre and post
teaching practice.

Voice samples with sustained
phonation of ‘i” were recorded
from 60 schoolteachers.
Acoustic analysis performed
using Doctor Speech (DRS),
Tiger Electronics, USA.
Acoustic features assessed
were FQ, jitter and shimmer,
MPT, HNR. Statistical analysis
performed using SPSS.

The % of shimmer and FO
were increased after teaching
practice. HNR and MPT
decreased significantly after
teaching practice. The values
of jitter showed no significant
difference.
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Study Purpose Methodology Findings of Study Limitations
FO significantly lower in DM
than HC. SAPQ significantly
Subjects made 5 s recordings ~ higher in DM vs. HC.
saying the vowel “ah” inone = Upon stratification into
exhalation through genders:
microphone 10 cm away from  No significant difference in Absence of laryngeal

Pinyopodjanard et al.,
2021 [55]

Variations in voice between
diabetics (DM) and HCs.

the mouth in a voice
laboratory. Parameter
extraction: FO, jitter %,
shimmer %, APQ, NHR,
sAPQ, RAP. Analysis using
computerized speech lab
model 4500 (CSL) in
conjunction with MDVP.

features between men and
HCs.

Female diabetics, women with
disease over 10 years, women
with neuropathy, women with
poor sugar control showed
lower FO than HCs.

FO could not significantly
predict DM when other
variables were considered.

examination, which could
have supplemented findings.
Variable baseline
characteristics between both
cohorts.

Goélag et al., 2022 [56]
Comparison of acoustic
elements between type 2 DM
(T2DM) and HC.

Subject recordings of 91
T2DMs and HCs. Praat
software used to evaluate
MPT, mean {0, jitter local
(Jlocal), jitter absolute (Jabs),
shimmer local (Slocal),
shimmer decibel (SdB), and
HNR.

Only Jabs displayed a
statistical difference between
both groups.

Patients with diabetic
neuropathy had statistical
differences in MPT and Slocal
vs. HCs. T2DMs with voice
complaints had differences in

Convincing evidence of
relation between DM and
voice not established.

Slocal and SdB vs. HCs.

4. Clinical Implications of Voice

Recent research studies have shown the analysis of variations in voice across various
medical conditions to diagnose diseases. Al can explore these multidimensional data [57].
Owing to the development of neural networks, we are now able to analyze voice in
ways we could not before. Currently, there are no FDA-approved digital voice analytical
technologies for clinical purposes, as it is an emerging field and needs more data [58]. Voice
biomarkers could help detect certain diseases at early stages for treatment. Various research
has been performed using voice analytics to detect neuropsychiatric, cardiac, pulmonary,
gastroenterology and endocrine diseases.

4.1. Neuropsychiatric Diseases
4.1.1. Parkinson’s Disease

PD is a neurological condition leading to disability, with increasing prevalence com-
pared with other neurological disorders [59]. PD most commonly affects the elderly, with
symptoms beginning gradually and worsening over time. With disease progression, pa-
tients have memory difficulty, ambulatory issues, speaking and sleep disturbances, and
behavioral changes. The standard diagnosis of PD is based on history and clinical symp-
toms [60]. The literature suggests voice impairment is the earliest sign of motor dysfunction
in PD and can manifest in the earliest stages of the disease, worsening with disease sever-
ity [9,61]. The correlation between anatomy and physiology in voice impairment in PD
has been investigated with various methods such as laryngoscopy, photoglottography, and
laryngeal electromyography [61]. Spectral analysis of the voice of PD patients revealed ab-
normalities such as decreased f0, HNR, and increased jitter and shimmer [9]. Rhonda J et al.
examined the voice characteristics of patients with PD according to the disease severity.
The study was conducted on 30 early-stage PD and 30 late-stage PD patients. The voices of
both groups demonstrated lower mean intensity levels and reduced maximum phonation
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frequency ranges compared with normal. Patients with late-stage PD had tremors as the
main voice feature [62]. Similarly, Harel et al. conducted a case—control study on variability
in the frequency of speech of a single individual over 11 years in prodromal PD. The results
suggested that changes in variability in speech and acoustic measures can be detected as
early as 5 years prior to diagnosis with other methods [63].

The challenges in early diagnosis of PD have inspired the development of ML models
using voice data of these patients to detect the disease and its prognosis. Timothy J et al.
applied different ML models to classify PD using the mPower Voice dataset and compared
it with controls [64]. Using 65,000 10 s voice samples from 6000 people saying /ahh/, it
was seen that RF and SVM classifier models were able to differentiate between people with
PD 85% of the time with 74% accuracy [64].

Benba et al. tried to differentiate between 20 HCs and 20 patients with PD. Sustained
vowels /a/, /o/, and /u/ were collected from subjects, and linear and nonlinear fea-
ture extraction were used to obtain the most effective acoustic features for classification.
SVM was used for classification, with 87.50% accuracy in differentiating between the two
groups [65]. B.E. Sakar et al. compiled voice samples, sound types, sustained vowels,
words, and sentences to have a dataset to develop a predicting telemonitoring model for
PD. Using time frequency-based feature extraction, the voice samples were grouped into
various parameters like frequency, pulse, amplitude, voicing, pitch, and harmonicity. These
were fed into SVM and KNN classifiers, which concluded that sustained vowels carried
more discriminative information than words and short sentences in PD [66].

Suppa et al. performed an extensive study comparing 30 vocal features between HCs
and PD patients, PD patients of early vs. mid-stage disease, PD patients with ON and OFF
therapy, and the effect of L-Dopa on voice. They developed an ML model using an SVM
classifier and ANN and were successful enough to accurately differentiate the said cohorts.
Of the early-stage PD patients, 32% did not display overt voice impairments, which were,
however, reported through the ML model, strengthening the prospect of subclinical voice
dysfunction recognition. A positive relation between likelihood ratio values computed
from the ML model between disease and voice impairment was established, making it a
reliable score to dictate voice dysfunction. L-Dopa was seen to have improving outcomes
on voice, with an inferior degree of improvement of motor symptoms [9]. These studies
suggest that voice can be used as a biomarker to diagnose PD with the help of Al Further
studies with a larger dataset and validation are required to bring this into clinical practice.

4.1.2. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of dementia worldwide [67]. The
National Institute on Aging and the Alzheimer’s Association (NIA-AA) have suggested cri-
teria for the diagnosis of AD according to symptoms and functional impairment. However,
definitive diagnosis is based on histopathological examination, which is rarely performed
in clinical practice, not to mention being invasive [68]. Early diagnosis of AD is crucial, as
it helps patients and caregivers plan for appropriate lifestyle changes to improve quality of
life. Various studies have identified the relation between speech changes and AD; however,
there is very little information on changes in voice.

With recent advancements in ML, it is possible to explore the acoustic changes in
voice for early detection of AD. Cognitive impairment, being an important presentation of
AD, can be studied through voice. Mahon et al. studied 10-year cognitive changes from
participants of the MIDUS who had completed cognitive testing. The subjects’ age ranged
from 42 to 92 years, with an average education of 14.57 years out of 20. The study found
increased jitter with higher declines of episodic memory, verbal fluency, and attention
switching. Deterioration of episodic memory was also related to lower pulse (p = 0.038) and
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fewer voice breaks (p < 0.001). Hence, studying changes in voice could be a predictor of
early cognitive impairment, aiding in the diagnosis of AD [27]. Another study conducted
an acoustic analysis to identify acoustic parameters in AD and their relation to the anomic
impairment. The recorded voice samples were analyzed by the Praat 5.1.4231 program
for variables like amplitude disturbance, resonance, and noise disturbance. The study
results showed a direct relationship between these acoustic parameters and verbal fluency
in AD [69]. ML-based diagnostic models to diagnose AD have been developed, but these
models were developed using MRI scan databases [70]. Improved ML models can augment
diagnosis at an early stage.

4.1.3. Attention Deficit Hyperactive Disorder (ADHD)

ADHD is a neurodevelopmental condition manifesting in children and characterized
by inattention, impulsivity, and hyperactivity [71]. There is evidence that there are neu-
roanatomical and functional changes that cause these symptoms. Currently, the diagnosis
of ADHD is primarily by clinical evaluation based on DSM-5 diagnostic criteria [72]. Recent
studies have mentioned the alterations in voice and speech of patients with ADHD. Studies
suggest differences in vocal parameters in children with ADHD vs. normal children [73].

Several review studies summarized ML- and DL-based diagnostic methods for ADHD.
Most of these studies have ML models developed using MRI, EEG, physiological signals,
motion data, and genetic data, but lack studies using voice analytics with ML models,
though research in this domain is steadily increasing [74]. Von Polier et al. used an ML-
based approach to determine the difference in prosodic voice features between healthy
and ADHD patients. Paralinguistic features based on F0 and loudness were analyzed and
filtered prior to classification. RF classifications using Tree-Bagger algorithms were able to
differentiate ADHD patients from HCs. Increased loudness, hoarseness, and breathiness
were seen in ADHD patients compared with HCs. Particularly, those with combined ADHD
were louder, had lower FO, more strained voices, and more hoarseness as well as breathiness.
This study suggested that voice analysis is promising in diagnosing ADHD [75]. Further
research with additional voice features in a larger cohort can improve the classification
performance.

4.1.4. Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a neurodevelopment disorder associated with
behavioral issues, with almost one-third of children intellectually and verbally disabled.
Diagnosis is clinically based on communication issues and restrictive and repetitive pat-
terns [76]. Children with ASD mostly develop speech disturbances, but half of these chil-
dren have distinctive acoustic patterns. They exhibit abnormal voice quality and prosody.
A study on pitch variability in the voices of autistic children found that these children
had a shallower and less harmonic structure. Abnormal auditory feedback or instability
in the mechanisms that control pitch can cause this variability [77]. These atypical vocal
characteristics can be used as biomarkers for the early diagnosis of ASD. A systematic
review of acoustic patterns in ASD showed that the ML domain can provide promising
results for the diagnosis of ASD [77,78].

Asgari et al. developed an ML model that translates prosodic abnormalities into
automated, measurable quantities. They developed a harmonic model (HM) using a voice
signal and computed a set of quantities related to the harmonic content. They used pitch-
related features and employed feature selection to isolate informative prosodic measures.
There was a significant association between pitch and loudness with the severity of autism,
facilitating the differentiation of autism from HCs [79]. These studies show that ML models
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using voice patterns can help diagnose autism in younger children with minimal or no
language.

4.1.5. Schizophrenia

Schizophrenia (SZ) is a severe neuropsychiatric disorder that occurs in early adulthood,
causing emotional, cognitive, and behavioral disturbances with reduced life expectancy [80].
Currently, the diagnosis of SZ is subjective and primarily clinical, with significant symptoms
identified by expert physicians. New technologies to reduce the misdiagnosis caused by
behavior-based presentations have been attempted [26,81]. Various studies have shown the
usage of Al techniques in diagnosing SZ using EEG and MRI findings [80,82]. An overview
of Al techniques based on MRI findings has mentioned challenges such as the overlap
of MRI findings with those of other neurological disorders and the time-consuming and
complicated nature [80].

Atypical voice patterns are seen in SZ, such as increased pauses, distinctive tone,
and pitch with varied intensities. These features can be used to develop ML models to
diagnose SZ at early stages. A meta-analysis on studies with ML models using acoustic
features of SZ found that voice analytics can be promising yet challenging for diagnosis.
Most studies used discriminant analysis and SVM to classify patients with SZ. More robust
multivariant studies including linguistic aspects such as lexical choices and syntactic and
semantic features can help develop better ML models in the future [83]. Compton et al.
found that patients with aprosody exhibited reduced variability in pitch, jaw movements,
tongue movements, and loudness in voice. The computer program VoiceSauce was used to
extract the phonetic linguistic parameter of pitch, and WaveSurfer 1.8.8 was used to extract
intensity readings. Praat was used to delineate the vowels from the voice recordings. On
comparing these features, results suggested that computational methods can be used to
quantify specific negative symptoms in SZ [84]. Voice and prosodic evaluations can help
identify the severity of SZ and help diagnose SZ in the early stages.

4.1.6. Mood Disorders

Mood alterations can manifest in facial expressions and through voice; hence, analysis
of voice could be of use [85]. Emotional state is primarily controlled by the limbic system;
hence, speech mechanisms can be manipulated unknowingly by emotional arousal through
the activation of the somatic, sympathetic, and parasympathetic nervous systems [86]. A
study group developed a “vitality” index calculating the degree of mental health from voice.
This is available as a smartphone/web application (Mind Monitoring System: MIMOSYS,
PST Inc., Tokyo, Japan) to monitor mental health and identify mental disorders. The app
recognizes changes in FO to determine the extent of calmness, anger, joy, excitement, and
sorrow. Due to diurnal variations, vitality in the morning was found to be more reliable for
evaluating mood [85]. Anxiety can be identified as an increase in pitch variability due to
trembling of the voice [46].

A study showed glottal acoustic features aided the discrimination accuracy of de-
pressed compared with healthy adolescents [87]. An explanation for this stems from the
fact that emotional stress is linked to supraglottal vortices/turbulences as well as psy-
chomotor retardation, leading to increased vocal tract muscle tone and rigidity, evident
as monotonous speech and poor articulation [86-88]. Differentiation of minor depression
from MDD is evident by the lower tone and increased pitch variation in the latter [46].

In an attempt to predict suicidal risk in depression patients, formants and power trends
were found to be the favoring vocal features of those at high risk. A pattern of increased
formant frequencies and first formant bandwidth, decreased higher formant bandwidths,
and glottal spectral slope flattening were associated with depression and suicidality [86,88].
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Conversely, most other studies recognized higher energy at upper-frequency bands shifting
to lower frequencies post-treatment [86]. Vocal jitter was high and FO low in those with
MDD and imminent suicide risk. The relation of jitter to suicidal risk is due to variations
in heart rate and blood pressure, in turn affecting blood flow in the vocal cords, causing
erratic vibrations as well as reduced motor unit activation leading to incoordination of
the laryngeal muscles. FO variation was more stressed in patients at the nearest risk of
suicide [86].

4.2. Pulmonary Disease

There is a close connection between voice and the respiratory cycle, the analysis
of which could potentially offer a solution in detecting and diagnosing pulmonary dis-
ease. Several studies have shown that vocal biomarkers can be incorporated to diagnose
conditions like COPD, asthma, and COVID-19 [89].

4.2.1. Asthma

Asthma is an inflammatory disease of the airways, affecting all ages, that causes
constriction of airways and unusual sounds when breathing [90,91]. Peak Flow Meters
are used by patients with asthma for daily monitoring in order to record the severity
of their condition. Such gadgets are very modest and easy to utilize, yet they need se-
vere cleanliness, which harms the stream sensors simultaneously. It was recognized that
pathological voices had higher degrees of jitter and lower levels of HNR [89]. In a study
by Dogan et al. that evaluated voice quality in patients with mild-to-moderate asthma
using both subjective and objective methods, MPT values were significantly shorter, and
average shimmer values higher, for both sexes compared with controls. Female patients
with asthma had higher average jitter values compared with sex-matched controls. There
was also a significant difference in the VHI and GRB scales between the two groups. The
study concluded that in asthmatic patients, MPT, frequency, and amplitude perturbation
parameters were impaired, but the vital capacity and duration of illness did not correlate
with these findings [92]. The vowel /i/ was a superior choice for speech-based asthma
categorization, with a classification accuracy of 80.79% by Yadav et al., whereas wheeze
was better for non-speech sounds [90].

42.2. COVID-19

Ever since the onset of the pandemic, remote or telemonitoring of COVID-19 patients
has been investigated in multiple aspects. The development of remote physiological moni-
toring of symptoms or recovery of COVID-19 patients would be considered a breakthrough.
Al can identify COVID-19 voice changes, which can be uplifted to create smartphone apps
or remote monitoring devices as a digital health solution to safely as well as effectively
monitor COVID-19 patients [89]. FO was shown to be beneficial in assessing the normal
functioning of the larynx, but shimmer, jitter, and noise in speech signals were symptomatic
of pathological instabilities in vocal fold oscillations and inappropriate closure of vocal
folds. RF was the most accurate approach for classifying healthy and pathological voices,
with an accuracy of roughly 82% in the analysis of three vowels, /a/, /e/,and /o/, for each
participant. When only the sound of the vowel /e/ was analyzed, the accuracy increased
to 85%. It was also discovered that the vowel /e/ was the most accurate in identifying
COVID-19 impacts on voice quality [6]. On the contrary, a study revealed that sustained
phoneme features corresponding to vocal tract modulation (MFCC, formants, and VTL) and
lung pressure stability (Intensity-SD) were sensitive to COVID-19 infection, and thus, could
potentially be used as a COVID-19 biomarker when compared with vocal fold vibration
features (jitter, shimmer, pitch, HNR, and NHR). The findings indicate that COVID-19
symptoms that influence laryngeal activity as well as the oral and nasal cavities cause the
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biggest change in the voice quality of prolonged phonemes. The characteristics retrieved
from the vowel /i/ during the first three days following hospital admission were the most
successful, with an SVM classification accuracy of 93.5% [17].

Vocal biomarkers are valuable for fatigue monitoring in COVID-19 patients. Voice
qualities such as pitch, word duration, and timing of articulated sounds are affected by
increased weariness. Consonant sounds that demand a high average airflow require more
vocal adjustments due to exhaustion. The authors believe that using voice biomarkers in
telemedicine technologies might enhance fatigue monitoring in persons with COVID-19 or
long COVID-19 [3].

Researchers found that voice analysis has the potential to increase the accuracy of
self-reported symptom-based screening methods for SARS-CoV-2 patients [49]. Some
researchers, however, have questioned the relevance of vocal biomarkers for COVID-
19 detection, and limitations include patients” acceptability and readiness for this new
technology, as well as health status, which influences adherence to the digital solution [31].

4.2.3. Aspiration

Park et al. used voice-recorded ML algorithms to categorize people with dysphagia
who are at risk of tube feeding and post-stroke aspiration pneumonia. This study found
that acoustic data acquired using a mobile device can assist in identifying post-stroke
individuals who are at high risk of respiratory issues. The XGBoost multimodal model,
which incorporated acoustic characteristics, age, weight, and the National Institutes of
Health Stroke Scale (NIHSS) score, had an AUC of 0.85 and a sensitivity level of 88.7% in the
categorization of patients with tube feeding and a high risk of aspiration. APQ11, shimmer,
and RAP were the most significant contributing variables among these metrics [34].

4.2.4. Pulmonary Hypertension

In a study by Sara et al., they evaluated vocal biomarkers and invasively measured
indices for pulmonary hypertension. Using voice-processing techniques, a vocal biomarker
was developed that retrieved 223 acoustic parameters from 20 s of speech, including MFCC,
pitch and formant measures, jitter, shimmer, and loudness. Individuals with greater mean
pulmonary arterial pressure (PAP > 35 mmHg) showed substantially higher mean voice
biomarker readings than those with lower mean PAP. A one-unit increase in the mean voice
biomarker was associated with a high PAP in multivariate logistic regression, implying a
relationship between a noninvasive vocal biomarker and an invasively derived hemody-
namic index related to PH. These findings might have significant clinical implications for
telemedicine and remote monitoring of patients with pulmonary hypertension [19].

4.3. Gastrointestinal Diseases

When we consider gastrointestinal diseases, Al networks have shown impressive
results in differentiating between benign and malignant lesions, analyzing GI images, and
assessing histological diagnosis [93]. We extend the discussion of potential Al applications
to voice analytics in gastrointestinal diseases.

In a study by Roldan-Vasco et al., they investigated the application of ML to extract
voice attributes from sustained Spanish vowels to explore how swallowing difficulties
impact phonation. F0, jitter, shimmer, APQ, PPQ, and energy were among the characteristics
recovered. For each feature vector, statistical functions such as mean, standard deviation,
skewness, and kurtosis were calculated. These characteristics gave information about the
short-term and long-term variability of the voice signal. They were useful in recognizing
changes caused by food or liquid residuals in the laryngeal vestibule [31].

In a study by Ayazi et al., voice parameters in normal subjects and GERD patients,
as well as the effect of anti-reflux surgery on those parameters, were evaluated. The
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researchers used electroglottography to measure impedance across the voice cords as par-
ticipants read a standardized text. Normal participants and GERD patients had their voice
frequency, amplitude, and closed-phase ratio computed and compared. When compared
with normal persons, patients with GERD exhibited much greater irregularity in both
voice frequency and amplitude. After surgery, there was a considerable improvement
in both voice frequency and amplitude in GERD patients. In conclusion, GERD impairs
voice quality, and anti-reflux surgery reduces voice irregularity in reflux patients [94]. Al
implementation would be effective as a noninvasive tool for GERD diagnosis, but it would
need a larger store of voice data among GERD patients.

4.4. Diabetes Mellitus

DM is a metabolic disorder causing fluctuations in blood glucose levels. These physio-
logical alterations may have implications on an individual’s voice quality. Hamdan et al.’s
study, which surveyed 105 patients with T2DM, was one of the first attempts to identify
vocal differences between HCs and those with T2DM [95,96].

Individuals with DM demonstrated diminished values in voice parameters including
jitter, RAP, shimmer, APQ, smoothed APQ, and NHR when compared with HCs. These
conclusions imply that diabetes has a negative impact on voice parameters, and it may assist
in the potential identification and differentiation of healthy and pathological voices [97].
Pinyopodjanard et al. showed a significant difference in FO, lower in female diabetic
patients compared with controls, through MDVP. This difference remained significant in
female diabetic subgroups. However, LR analysis revealed that FO was not able to predict
the presence of diabetes effectively. FO was found to be a poor predictor of diabetes [56].

Evaluation of vocal variables during episodes of hypoglycemia and hyperglycemia in
type 1 diabetes-afflicted individuals was studied. In women, energy (E), amplitude of FO
(AFO), phonation probability (Voiced), formant frequency (F1, F4), residual-to-harmonic
ratio (R2H), and harmonic-to-all-energy ratio (Fx3, Fx4) were significantly altered during
hypoglycemia, whereas RAP and formant frequency F2 were significantly altered during
hyperglycemia when compared with normoglycemia. In men, PERiods (PER), duration of
fundamental PERiods (PERTime), Voiced, simple voice quality (SimpleQ), shimmer, APQ,
F2, unharmonic-to-harmonics ratio (U2H), subharmonic-to-harmonic ratio (S2H), Fx2,
and NHR evidenced differences during hypoglycemia, whereas PERTime, F1, harmonics
perturbation quotients (HPQ), U2H, and Fx2 demonstrated significant variation during
hyperglycemia (all p < 0.05) [98].

A potential relationship between voice characteristics and blood glucose levels has
been suggested, but more research with larger datasets is required to confirm these findings
and explore the potential application of voice analysis as a noninvasive tool for blood
glucose assessment [98,99].

4.5. Cardiac Diseases

The influence of the cardiac system on phonation is attributed to the numerous blood
arteries existing in the vocal folds. The cardiac cycle causes a physiological variation in FO.
During systole, ejection of blood causes swelling of the muscular body of the vocal folds,
narrowing the glottis, reducing the glottal closure time, and elevating F0. This physiological
process causes cyclical FO variation during normal phonation. Any condition affecting the
heart rate and systolic rate will cause erratic FO alterations [86].

Although well-established CAD risk markers such as Framingham-based models,
ASCVD score, and the Systemic Coronary Risk Evaluation (SCORE) model exist, they fall
short by not including a certain subset of patients with preclinical atherosclerosis, sedentary
patients, and those with inflammatory disorders. They also consider only traditional risk
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factors such as hypertension and smoking status, which contribute to less than 70% of CAD
cases. Utilizing voice as a supplement to existing markers will allow remote identification
of those at risk as well as aid in the management of CAD, reducing the burden on healthcare
systems [100]. LR analysis of MFCCs exhibited an association with CAD and voice [101].

Congestive heart failure (CHF) causes vocal fold and pulmonary edema owing to
the fluid-retentive nature of the disease, leading to phonation alterations. CHF-related
edema can be monitored by body weight; however, this occurs only toward the later
stages. The extent of CHF edema required to alter the voice is relatively small compared
with the extent required to increase body weight. Hence, collecting glottal, time, and
frequency-domain glottal parameters and vocal tract, MFCCs, and acoustic features would
provide crucial data. The study revealed that MFCCs had more diagnostic accuracy than
glottal features [101]. Reddy et al. documented a more rounded glottal pulse and lower
second pressure level (SPL) in CHF patients than in HCs, suggesting imperfect glottal
closure leading to inappropriate leakage of air through the glottis, again strengthening the
diagnostic value of glottal features [102]. A first-of-its-kind study documented an associa-
tion between voice and adverse outcomes in CHEF, including future hospitalizations and
mortality. Acoustic features such as pitch, formant, jitter, shimmer, and loudness were used
in creating a linear ML model [15]. The cepstral peak prominence (CPP) vocal parameter
was linked to improvement in CHF symptoms post decompensation treatment [101]. There
is a need for novel methods of detection of even the minutest decompensation of CHF, and
voice analytics might just fill the gap.

4.6. Miscellaneous

There is a potential link between endocrinopathies and changes in voice function.
The discovery of laryngeal receptors for sex hormones and thyroid hormones shows that
alterations in voice may occur as a result of endocrine diseases [2].

A summary of various clinical settings in which vocal analysis can be employed is
shown in Figure 2.
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5. Challenges and Limitations

Using voice as a mode of diagnosis poses certain challenges. To ensure a smooth
transition from research of voice technology to clinical practice, certain factors should be
considered. Voice being a physiological parameter, it is influenced by language, accent,
age, and culture-specific features, which could raise biases [1]. The ideal vocal biomarker
integrated to form a digital health solution would be language- and accent-independent.
Having said that, narrowing data collection to only vowels or sounds instead of sentences,
words, or numbers would eliminate such influences. There is a need to improve natural
language processing to understand and analyze vocal recordings [1]. An inevitable concern
of recording voice is its identifiable nature, creating issues of privacy and security.

5.1. Technical Challenges

Identified challenges with vocal analysis include creating and sharing large data-
banks with high-quality audio recordings with clinical information and identifying vocal
biomarker candidates. Proof-of-concept studies would prove effective. Ensuring audio data
synchronization and standardization across studies, in addition to creating more universal
accent-, age-, and culture-independent vocal biomarkers, is essential. This can be achieved
through replication studies, which can also help to improve algorithm accuracy [1]. This
would enable compatibility and transferability, allowing cross-comparisons. Incorporating
algorithms into medical devices can be challenging, and qualitative studies with co-design
sessions with end users and pilot studies could be beneficial. The embedment of algorithms
into already existing IT or telehealth systems is yet to be determined, but it can be aided by
randomized controlled trials and real-world evaluation studies [1].

5.2. Security, Privacy, and Ethical Challenges

The Health Insurance Portability and Accountability Act (HIPAA) was introduced in
1996 to safeguard patient data under different subgroups that are considered Protected
Health Information (PHI) [103]. Voiceprints are information that falls under the umbrella
of PHI. Given that they can be used to determine an individual’s identity, demographics,
ethnicity, and health status in the context of vocal biomarkers, voice data are regarded
as sensitive information [1]. Article 4.1 of the General Data Protection Regulation of the
European Union (GDPR EU) states voice as non-anonymous data. It is important to include
variable profiles and maintain transparency to minimize systemic biases. Data encryption
and random splitting of data for independent processing can be used to address ethical
concerns [1].

Methods of De-Identification

Audio de-identification or voice de-identification is the process of removing or altering
personal information from audio recordings to protect the privacy of users. For the context
of our research, audio de-identification aims to preserve the anonymity of patients while
still allowing the analysis of their voice data for diagnostic purposes. This process involves
several techniques to ensure privacy, enumerated in Table 7 [104-108].

Table 7. Methods of deidentification of voice.

Redaction of personal information: Personal identifiers like name, address, phone number, and other sensitive information are
removed from the transcribed text. These identifiers can be recognized through pattern matching, entity recognition, or custom
rules.

Voice transformation: To further anonymize the audio, voice transformation techniques can be applied. These methods modify
the characteristics of the voice, such as pitch, tone, and speech rate, making it difficult to identify the speaker’s identity.
Transformation approaches used to date include the following:

Speaker’s voice is converted to a specific synthetic voice

GMM Mapping “kal-diphone”.
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Table 7. Cont.

Changes a person’s voice to sound like another person’s voice,

De-duration Voice Transformation (DurVT) known as a target voice

Uses two-step transformation: first, it uses DurVT, which
produces a synthetic voice “kal-diphone”. Secondly, data
from DurVT further undergo transformation using baseline
voice transformation technique.

Double Voice Transformation (DoubleVT)

The baseline voice transformation systems essentially
perform linear mappings from the features of the source

Transterpolated Voice Transformation (Trans VT) speaker to the features of the target speaker. Transterpolation
involves interpolating or extrapolating between the features
of the source speaker and the converted features.

Voice cloaking: Voice cloaking is a technology designed to alter or disguise someone’s voice to maintain their anonymity or
protect their identity. It works by modifying the characteristics of the voice, such as pitch, tone, and timbre, to create a different
vocal sound. There are four steps: voice analysis, voice transformation, synthetic voice generation, and playback or real-time
processing.

Noise addition: Additional noise can be introduced into the audio to mask any remaining identifiable speech patterns. This can
be done by adding background noise or altering the audio signal through filtering or modulation. Noise addition can be
additive, multiplicative, or logarithmic multiplicative.

Ephemeral Data Storage: Ephemeral storage is like a temporary storage only when the device is turned on. An example of such
temporary data storage arrangement would be the audio-based social media platform “Clubhouse”, which allows users to
participate in real-time voice conversations in virtual rooms. The audio content shared in these rooms is not recorded by default.
It is deleted after the session ends. A drawback of this approach is that without storing voice data, we might face limitations
when it comes to training future ML models.

5.3. Other Challenges

1.

Lack of standardized methods of collecting acoustic data: It is recommended to use
an omnidirectional head-mounted microphone distanced 4-10 cm from the lips and
at an angle of 45-90° away from the mouth. This allows improved SNRs as well
as consistent mouth—-microphone distance [109]. As studied by Svec and Granqvist,
the microphone should meet the following features, such as having a flat frequency
response with a variation of less than 2 dB [110]. The noise level should range from
10 dB lower than the quietest sound to recording the loudest acoustics without clip-
ping [110]. A microphone preamplifier should then augment the captured sound
without altering the original signal. This analog signal can be converted to a digital
signal through an internal high-quality computer sound card or with an external
device, preferably the latter. Characteristics of these converters include a sampling
rate of >44.1 kHz, minimum resolution of 16 bits, noise level of 10 dB or lower than
the quietest sounds, and an adjustable gain to capture the loudest sound with minimal
clipping [109,111]. The recommended audio file format is WAV, as it has no compres-
sion. The recording environment should be at least 10 dB weaker than the level of
the quietest sound. A baseline recording of the background environment should be
performed while the subject is quiet for 5 s. Soundproof rooms are preferred [109].
Variability and noise: Human voices can exhibit significant variability due to factors
like age, gender, speaking styles, accents, or variations in their vocal characteristics.
These variations can make it difficult for the model to distinguish between disease-
related characteristics and other naturally occurring factors [108].

Training set size and quality: The model’s performance relies heavily on the quality
and size of the training dataset. Insufficient or unbalanced data can result in biases
or reduced accuracy. Obtaining a diverse and adequately sized dataset can be a
challenge [108].

The dataset should have a good mix of sounds from people with diseases as well as
from people who are healthy and do not have any diseases to ensure the model is
balanced and not biased toward any one side [1].

Optimal design/user experience: There should exist smooth and painless integration
of voice analyzing devices in the daily life routine of patients, particularly the elderly,
who are not so familiar with technology [4].
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6.  Reliability and trust: There is the necessity of proving voice as a biomarker in future
studies of the accuracy or prognosis assessment capability of these algorithms in
diagnosing disease. A need to prove further value above existing technology exists [4].

7. Lack of generalizability and reliability: ML models can often learn unwanted features
from datasets, questioning generalizability and reliability. To reduce variability, it is
best to use multi-study ML techniques [112].

6. Discussion and Conclusions

Medical care has evolved since the pandemic, with video or teleconsultations replacing
many hospital visits. Digitization has become the greater focus. Medical devices have long
been used to monitor physiological parameters such as blood pressure, oxygen saturation,
blood glucose, and cardiac rhythms [31,113]. The human voice is another readily available
and collectable physiological parameter containing rich diagnostic clues that could be used
for predictive analytics. The notion of using voice as a mode of supplemental diagnosis or
as a prognostic indicator is yet to be fully functional. Its noninvasive nature and reduced
patient burden, along with the fast and high volume of data collection reducing the health
system burden, supports the need to explore more of this domain [1,2,31].

The human voice is an index reflecting characteristics of the vocal cords produced from
synchronous interactions of the anatomical, physiological, neurological, respiratory, and
cardiovascular systems [2,20,46,114]. Therefore, any alterations in these systems alter cer-
tain parameters of the voice, which can be appreciated and analyzed. Artificial intelligence
plays a key role in uplifting this approach, creating a new dawn in digital health [1,4,49].
The Fourth Industrial Revolution has presented innovative technologies including voice-
powered technologies such as Google Assistant, Alexa, and Siri on smartphones as well as
at home, allowing extensive use of voice-controlled search, called CAI The advent of voice
technology, artificial intelligence, and neural networks has opened a way to use voice as a
biomarker, creating a potential digital health solution [1,4].

Algorithms already exist for voiceprint recognition to distinguish voiceprint features,
although they are limited to legal use and by the FBI [20]. Expanding on this, voice as a
biomarker has been studied in various domains, with more focus on neurodegenerative
conditions such as Parkinson’s disease, Alzheimer’s, psychiatric conditions, mood disor-
ders, and imminent suicide detection, expanding to pulmonary diseases with increased
application in COVID-19 [4,115]. Novel applications have been studied in the identification
and prognosis of diabetes, CHF, CAD, GERD, and endocrine disorders. Using phenomes
such as vowels makes the vocal biomarker more sensitive due to its language-, accent-, age-,
and culture-independent nature. Vocal parameters commonly assessed include the stan-
dard amplitude, pitch, pulse, and NSR as well as perturbation features: F0O, shimmer, jitter,
HNR, and others such as MPT and the S/Z ratio [16,26,27,116]. Glottal, temporal-spectral,
and formant features can supplement acoustic findings [46].

Multiple ML and DL models have been studied across various aspects. In relation
to PD, KNN showed the highest accuracy for PD male patients, and for female patients,
SVM [7]. SVM was also found to have 88% prediction accuracy of fatigue for single vowels
and 94% for multi-vowels [20]. OpenSMILE was utilized mainly in MDD studies, but
these studies were performed on a small sample size [8,10]. A study performed to evaluate
various ML models such as SVM, RE, XGBoost, GBM, adaBoost, Linear, Ridge, elasti
net, and LASSO regression to monitor cognitive performance in trauma victims showed
XGBoost outperformed the others [45]. A similar study to differentiate between minor
and major depression revealed MLP exhibited the best performance (AUC 0.79 for mDE
and 0.58 for MDD at 7:3 training set; at 8:2 training set, AUC 0.69 for mDE and 0.67 for
MDD) [46]. Various ML models were studied in detecting voice changes in COVID-19
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patients from HCs, and the results showed RF (accuracy 82%, sensitivity 94%, specificity
70.59%), Adaboost (accuracy 74%, sensitivity 71%, specificity 76.4%), SVM (accuracy 74%,
sensitivity 94%, specificity 52.94%) [6]. XGBoost had higher sensitivity AUC in detecting
post-stroke patients at high risk for aspiration [35]. Overall, SVM was found to be best
among majority disease spectra for smaller datasets, but for larger datasets, DL models
such as ANN and CNN were found to be superior [33,37]. It is to be noted that the ML and
DL models have been studied for individual disease analysis. A future exploration would
be to analyze a massive dataset of various diseases affecting various systems in the same
recording environment using the same model and statistical analysis.

A major challenge with vocal biomarkers is the identifiable nature of voice, potentially
violating HIPAA [1]. Encryption methods such as redaction, transformation, cloaking,
and noise addition could overcome this [104-108]. The US FDA has not approved vocal
biomarkers yet, mainly since this area is so new, and more data are needed. There is also
a lack of standardized voice recording or processing methods [1,20]. Novel technological
applications are relatively less readily accepted or trusted by people, and hence, they would
require convincing evidence of superiority over existing health technologies [4]. There
is a lack of generalizability and cross-platform transferability in existing studied models,
creating a need for studies with larger cohorts and variable phenotypes [1,109]. Recording
from smartphones reduced data accuracy compared with recording with a standardized
microphone in a soundproof room with the microphone at a fixed distance [116,117].
Ultimately, a unified corpus collection standard and a large-scale library of clinically
available voice samples would be needed. This, followed by algorithm optimization
and updates and the incorporation of algorithms into user-friendly devices, should be
developed.

Future Perspectives

Vocal biomarkers can be coupled with smartphone apps, chatbots, smart mirrors, cars,
and vocal assistants to monitor symptom resolution, provide information on mental health
and quality of life decline, and curate a personalized follow-up post-diagnosis [31,114].
In triage areas of the hospital, vocal screening could be employed [31]. In clinical set-
tings, vocal analysis could be employed for supplementing diagnosis, stratification, and
telemedicine/telemonitoring [1]. Vocal biomarkers could be incorporated with alert
systems, improving patient safety. Integration with health calls or emergency centers
would give real-time analysis of important health-related aspects, supplementing consulta-
tions [1,31]. This approach would help describe significant events occurring between two
follow-up visits, bridging the existing gap [31].

The development of voice analytic devices as wearable technologies is an area to
explore. Constantly improving technology, data-transfer capabilities, 5G networks, and
increased usage of smartphones with voice assistants or at-home voice assistants will
enable easy collection and processing of vocal data in high definition. It is imperative
to adapt natural language processing in voice technologies to understand emotion and
empathy in the voice if we are to consider long-term implementation [1]. With future
studies incorporating reliable technology with artificial intelligence and larger cohorts of
broader phenotypes, voice analysis is a promising digital health solution.
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